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1  |   I N TRODUC TION

Spontaneous abortion (or miscarriage) is defined as preg-
nancy loss before 20–24 gestational weeks, with ~23 million 
instances occurring yearly worldwide.1 We currently lack 
a consensus regarding the number of pregnancy losses re-
quired to meet the recurrent miscarriage criteria – values 
range from two clinical miscarriages (American Society for 
Reproductive Medicine (ASRM)2 and European Society for 

Human Reproduction and Embryology3) to three consec-
utive pregnancy losses (Royal College of Obstetricians and 
Gynaecologists4).

Studies of recurrent pregnancy loss (RPL) have iden-
tified causative factors, including parental chromosomal 
translocations, congenital/acquired uterine abnormalities, 
endocrine disorders, autoimmune factors, and infectious 
and thrombophilic causes.5–15 Chromosomal abnormali-
ties occur in ~60% of miscarriages16 and <1% of live births 
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Abstract
Objective: To evaluate cell-free DNA (cfDNA) testing as a non-invasive approach to 
detecting aneuploidies in clinical miscarriages.
Design: A retrospective cohort study of women with pregnancy loss.
Setting: Hospitals and genetic analysis laboratories.
Population or sample: Pregnancy losses in the period 2021–2022.
Methods: Results derived from non-invasive cfDNA testing (Veriseq NIPT Solution 
V2) of maternal blood and invasive analysis of products of conception (POC) (Ion 
ReproSeq) compared in 120 women who suffered a miscarriage.
Main outcome measures: Concordance rate results, cfDNA testing performance, 
non-informative rate (NIR) and fetal fraction (FF).
Results: We found no significant differences in the NIR between invasive (iPOC) 
and non-invasive (niPOC) analysis of POC (10.0% [12/120] versus 16.7% [20/120]). 
Of 120 samples, 90 provided an informative result in iPOC and niPOC groups (75%). 
cfDNA analysis correctly identified 74/87 (85.1%) samples (excluding triploidies). 
Sensitivity and specificity were 79.4% and 100%, respectively; all discordant cases 
were female. A binomial logistic model suggested fetal sex as the only variable influ-
encing the concordance rate (P = 0.035). A Y-chromosome-based FF estimate allowed 
the optimal reclassification of cfDNA of non-informative male fetuses and a more 
accurate evaluation of cfDNA testing performance. The difference between the two 
FF estimates (native algorithm and Y-chromosome-based) suggests that female non-
concordant cases may represent non-informative cases.
Conclusions: Cell-free DNA-based testing provides a non-invasive approach to de-
termining the genetic cause of clinical miscarriage.
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when prenatal diagnosis is not performed.17 Cytogenetic 
analyses have traditionally determined genetic causes for 
miscarriage and the recurrence risk18,19; however, they de-
pend on cell culture of products of conception (POC) and 
a well-standardised methodology in routine laboratory 
use.20 While representing the gold standard for studying 
structural rearrangements, karyotyping suffers from lim-
ited resolution in detecting copy number variations (CNVs) 
below 5–10 Mb,21,22 a high failure rate (10–40%) due to poor 
tissue quality, and a significant lag (2–6 weeks) in obtaining 
results.18

The informative rate for POC analysis has increased to 
~80% following the advent of DNA-based analytical meth-
ods23–29; however, molecular/cytogenetic approaches require 
fresh, uncontaminated and unfixed tissue to identify fetal 
tissue and perform DNA extraction/cell culture, which car-
ries the potential risk of maternal cell contamination (MCC) 
and misdiagnosis.30 POC availability has recently decreased 
due to increased misoprostol use for miscarriage manage-
ment,31,32 making it challenging to use previously noted 
methods to determine chromosomal causes of early preg-
nancy loss (EPL) or RPL.33

Cell-free DNA (cfDNA) analysis represents an alternative 
to conventional diagnostic methods. Lo et al.34 discovered 
cfDNA in the plasma of pregnant women in 1997, paving 
the way for cfDNA-based non-invasive prenatal testing 
(NIPT). This highly utile approach can screen for common 
aneuploidies and detect rare autosomal aneuploidies/CNVs. 
As numerical chromosomal abnormalities cause 50–70% of 
EPL cases (most commonly trisomies and monosomies35–37), 
cfDNA-based analyses have provided proof of concept for 
investigations into the aetiology of EPL and RPL.30,32,38

Despite recent advances, little research has been carried 
out for non-viable pregnancies; therefore, we sought to ex-
plore the potential for chromosomal abnormality detection 
in sporadic EPL and RPL via cfDNA-based testing.

2  |   M ETHODS

2.1  |  Ethical approval

The study was reviewed by the Institutional Review Board 
(IRB) of the INCLIVA Health Research Institute, and a de-
cision was made on 28 July 2022. Each provider ensured 
compliance with their own internal ethics and the Ethics 
Regulation of the clinical diagnosis approved in Spain.

2.2  |  Study design and participants

This observational national retrospective study was con-
ducted at the Igenomix facilities in Valencia (Spain) between 
February 2021 and July 2022 with samples collected in 24 
collaborating centres. Eligibility criteria included naturally 
conceived or assisted reproductive technology-conceived 
pregnant women over 18 years of age who suffered from 

spontaneous abortion in the first (≥5 weeks of pregnancy) or 
second trimester of pregnancy (16 weeks of pregnancy) (for 
more details on the gestational age, see Table S1). Samples 
were analysed if they had a next-generation sequencing 
(NGS) result from the corresponding invasive POC (iPOC) 
analysis. Exclusion criteria were: (i) missed miscarriage, (ii) 
vanishing twin pregnancies, (iii) pregnant women with a 
known immunological disorder, (iv) patients with an altered 
unbalanced karyotype (i.e., 45, X0 or 47, XXX), and (v) pa-
tients with an active neoplastic process.

2.3  |  Sample collection

POCs were collected according to the clinician's routine clini-
cal practice. Up to 10 ml of maternal blood was collected in 
cfDNA BCT® tubes (Streck) for cfDNA analysis and MCC 
assessment. The POC kit instructions highlight the impor-
tance of collecting maternal plasma samples before the expul-
sion of the fetal remains; however, most collaborating centres 
did not record this information on the test requisition form. 
Therefore, this variable could not be included in the study.

2.4  |  POC processing and NGS approach 
(iPOC analysis)

Fetal and maternal tissues were visually identified when-
ever possible. Samples were cleaned, two sections were taken 
and DNA was extracted using the Qiagen QIAamp DNA 
extraction kit. The short tandem repeat (STR) AmpFISTR 
Identifiler Plus protocol (Life Technologies) was used to de-
tect/rule out MCC and some polyploidies. Genetic testing 
for POC was performed using the S5 PGS Assay (NGS) for 24 
chromosomes to detect numerical chromosomal abnormali-
ties. The Ion ReproSeq PGS kit was used for 24-chromosome 
aneuploidy screening (Thermo Fisher Scientific). Data anal-
ysis was performed using the ION REPORTER software 
(IRv5.16) (Thermo Fisher Scientific), which aligns reads 
using the human genome assembly (hg19) (Thermo Fisher 
Scientific) and a proprietary bioinformatics pipeline (v2.0).

2.5  |  cfDNA testing (niPOC analysis)

Cell-free DNA testing for non-invasive POC (niPOC) analy-
sis was performed by genome-wide sequencing using pro-
prietary protocols and data analysis algorithms provided by 
Illumina (VERISEQ v2 solution). The cfDNA was extracted 
from 1 ml of plasma using a modified QIAamp DNA blood 
mini kit (Qiagen) protocol. Sample indexing and library 
preparation were performed using a TruSeqNano DNA 
sample preparation kit (Illumina) and then analysed using 
paired-end technology on a NextSeq 500 system (Illumina). 
The fetal fraction (FF) was calculated using two estimates: 
one provided by Illumina's algorithm (FFi), which considers 
both the cfDNA fragment size distribution and differences 
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in genomic coverage between maternal and fetal cfDNA, and 
another based on normalised chromosome values (NCV) of 
the Y-chromosome (see Equation 1) for male fetuses only.39

In the main text, FFr refers to the recalculated FF consid-
ering both estimates, i.e. the FF for female fetuses is taken 
from the native algorithm, whereas the FF for male fetuses is 
the value calculated with Eqn 1.

Data analysis was performed using Illumina software to 
determine POC classification. To make chromosomal rep-
resentation calls, the VERISEQ NIPT ASSAY SOFTWARE 
v2 uses the individualised Fetal Aneuploidy Confidence Test 
(iFACT), a dynamic threshold metric that indicates whether 
the system has generated sufficient sequencing coverage, 
given the FF estimate for each sample. If a sample does not 
meet this threshold, the quality control (QC) assessment dis-
plays ‘FAILED iFACT’ and is considered a non-informative 
result. Similarly, all cases with an FFChrY of less than 2% 
were classified as non-informative. In addition to iFACT, 
the VERISEQ NIPT ASSAY SOFTWARE v2 assesses several 
additional QC metrics during analysis. The additional met-
rics include assessments of coverage uniformity on reference 
genome regions and the distribution of cfDNA fragment 
lengths. The QC assessment displays either a QC flag or fail-
ure for any metrics outside the acceptable range. In the case 
of QC failure, the system does not generate a sample result. 
Based on the NCVs and T-score values, samples were classi-
fied as screen-negative (no aneuploidy detected) or screen-
positive (aneuploidy detected).

2.6  |  Statistical analysis

Variables were expressed as the median and interquartile 
range (IQR). Binomial logistic regression was used to deter-
mine the effect of qualitative variables (presence of anomaly 
and fetal sex) and quantitative variables (gestational age 

[GA], maternal age [MA] and FF) on the concordance rate 
between the niPOC and iPOC approaches. Test performance 
was assessed by estimating the values of sensitivity, speci-
ficity, positive predictive value (PPV) and negative predic-
tive value (NPV). Statistical analyses were performed using 
XLSTAT software (Addinsoft).

3  |   R E SU LTS

We simultaneously analysed 120 POCs by low-pass NGS 
using both direct tissue DNA (iPOC) and maternal blood 
cfDNA (niPOC). Table 1 summarises baseline patient char-
acteristics stratified by the informativity results. There were 
no differences in non-informativity rates between iPOC and 
niPOC (10.0% [12/120] versus 16.7% [20/120]). We found a 
lower FF value estimated by the native algorithm (FFi) or Y-
based chromosome (FFr) in non-informative niPOC cases 
(FFi: 6.0% versus 2.7%; FFr: 5.9% versus 1.4%). Of the 20 non-
informative niPOC cases, 17 were male (85.0% [17/19]) and 
three female (15.0% [3/20]). FF disaggregation by GA sug-
gested that the time of fetal arrest may not determine infor-
mativeness (Figure 1). We observed no noticeable differences 
between the MA and GA values of the involved patients.

We evaluated concordance rates between iPOC and 
niPOC after removing the non-informative cases (Table 2) 
and found no differences for FF, GA (Figure 2) or MA val-
ues (Table  2). The iPOC detected specific abnormalities: 
trisomy 13, 18 or 21 (n = 13); monosomy X (n = 12); other tri-
somies (n = 34); CNVs (n = 1); multi-aneuploidy (n = 3); and 
triploidy (n = 3) (Table S1). niPOC correctly identified 74/90 
(82.2%) samples, including 50 abnormal and 24 normal 
cases (Table S1) but did not correctly classify 16 abnormali-
ties: monosomy X (n = 3), trisomy 13 (n = 1), trisomy 4 (n = 1), 
trisomy 11 (n = 1), trisomy 16 (n = 1), trisomy 20 (n = 1), tri-
somy 22 (n = 5) and triploidy (n = 3) (Table S1). Fetal sex was 
correctly assigned in all cases. All discordant cases (except 
triploids) were female, with a median FFi of 4.6%. A univar-
iate model suggested that fetal sex influenced discordance 

(Eqn 1)FFChrY = (NCVY ∙ 0.0005) ∙ 100

T A B L E  1   Comparison of demographics between informative and non-informative cases within the niPOC and iPOC cases.

iPOC approach niPOC approach

Variable Informative (n = 108) Non-informative (n = 12) Informative (n = 100)
Non-informative 
(n = 20)

MA 36.0 (33.8–39.0) 38.5 (37.0–39.3) 37.0 (34.0–39.0) 36.0 (32.5–39.0)

GA 8.0 (7.0–9.4) 8.0 (7.6–8.5) 8.0 (7.0–9.3) 8.0 (7.5–9.0)

FFi 5.6 (3.9–8.9) 3.6 (3.0–5.3) 6.0 (4.1–9.0) 2.7 (2.3–4.3)

FFr 5.0 (3.0–8.2) 3.5 (2.5–5.3) 5.9 (4.0–8.8) 1.4 (0.6–1.7)

Fetal sex

Male, n (%) 51 (47.0) 38 (38.0) 17 (85.0)

Female, n (%) 57 (53.0) 12 (100) 62 (62.0) 3 (15.0)

Note: Data presented as median (interquartile range) or n (%) unless otherwise specified.
FFi, fetal fraction estimated by the Illumina algorithm; FFr, FF recalculated (FF for female fetuses taken from the native algorithm and FF for male fetuses based on the Y-
chromosome); GA, gestational age; iPOC, invasive products of conception (low-pass NGS); MA, maternal age; niPOC, non-invasive products of conception (cfDNA testing).
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rates (Table  2). We used a binomial logit model to predict 
the effect of study variables (i.e. MA, GA, FF and fetal sex) 
on concordance rates. Based on the Type II sum of squares 
(Table 3), only fetal sex affects concordance rates (adjusted 
odds ratio [aOR] 0.26, 95% CI 0.05–0.92).

We found a sensitivity and specificity of the test (consid-
ering only informative cases) of 0.76 (95% CI 0.64–0.85) and 
1.00 (95% CI 0.86–1.00), respectively; a PPV of 1.00 (95% CI 
0.93–1.00); and an NPV of 0.65 (95% CI 0.47–0.8). However, 

test performance sensitivity increased to 0.79 (95% CI 0.67–
0.89) with a concordance rate of 85.1% after excluding trip-
loids; a PPV of 1.00 (95% CI 0.93–1.00); and an NPV of 0.65 
(95% CI 0.47–0.8). Finally, sensitivity increased to 100% 
(33/33) when only assessing concordance for male fetuses.

4  |   DISCUSSION

4.1  |  Main findings

Our data support cfDNA testing as a non-invasive means to 
assess aneuploidy in clinical miscarriages. Non-informative 
rates for niPOC displayed insignificant differences from 
iPOC and were lower than for karyotyping.5

4.2  |  Strengths and limitations

Non-invasive POC analysis will benefit pregnant women un-
dergoing medical management with misoprostol or requir-
ing surgical extraction to retrieve POCs.31 This alternative 
approach positively impacts patient well-being, as knowing 
that loss derives from chromosomal and not maternal prob-
lems can provide comfort/relief.40

We used a Y-chromosome-based FF estimator and the 
native algorithm default. Y-chromosome-based methods 
provide accurate FF estimates in male fetus pregnancies,41,42 

F I G U R E  1   Fetal fraction variation according to gestational age. No significant differences were found in FF among the different GAs studied, 
suggesting that the time of fetal arrest does not influence the informativeness of the results. FFr: FF recalculated (FF for female fetuses taken from the 
native algorithm, and FF for male fetuses based on the Y-chromosome); W, weeks.

T A B L E  2   Comparison of demographics between concordant and 
non-concordant cases.

Variable Concordant (n = 74)
Non-concordant 
(n = 16)

MA 37.0 (34.0–39.5) 35.0 (32.0–38.5)

GA 8.1 (7.0–9.4) 8.1 (7.8–9.1)

FFi 7.0 (4.8–9.1) 5.5 (4.0–6.9)

FFr 6.9 (4.1–9.0) 5.5 (4.0–6.9)

Fetal sex

Male, n (%) 33 (44.6) 3 (18.7)

Female, n (%) 41 (55.4) 13 (81.3)

Note: Data presented as median (interquartile range) or n (%) unless otherwise 
specified.
FFi, fetal fraction estimated by the Illumina algorithm; FFr, FF recalculated (FF for 
female fetuses taken from the native algorithm and FF for male fetuses based on the 
Y-chromosome); GA, gestational age; MA, maternal age.
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allowing non-informative case reclassification and more 
accurate/objective assessments of concordance rates and 
cfDNA testing performance.

A lack of information regarding the timing of maternal 
blood sample collection represents a limitation; most col-
laborating centres did not provide this data, so we cannot 
know whether samples were taken before or after POC evac-
uation. This represents a challenge, given the rapid clearance 
of fetal DNA from maternal plasma after delivery (mean 
half-life of 16.3 minutes) in cases without medical condi-
tions/antenatal complications.43 Schlaikjær Hartwig et al.44 

described a three-fold increase in cfDNA non-informative 
rates 12–24 hours after evacuating POCs; therefore, we can 
assume that some non-concordant samples represent non-
informative cases (note: all cases were females [except the 
triploids] with low median FFi). For this subset, we lacked 
tools such as the Y-chromosome-based FF to identify female 
fetuses with an overestimated FF and, therefore, concor-
dance rates may be underestimated and test performances 
could be significantly improved. The 100% concordance 
rate for male fetuses after excluding triploids supports this 
hypothesis. FF estimation and/or short DNA fragment en-
richment improvements may significantly impact cfDNA 
performance in POC analysis.

The non-detection of polyploidy represents another lim-
itation. A triploid detection rate of 5% lies within the ex-
pected range (5–10%) for triploids in the first trimester as 
natural pregnancy losses.45–47 Therefore, in cases of molar 
pregnancy/suspected altered ploidy, cfDNA analysis for ge-
netic POC evaluation should be discouraged.

Genetic abnormalities may be missed with mosaicism 
and low FF. In fact, according to the Illumina VERISEQ 
NIPT SOLUTION v2 package insert, the minimum FF re-
quired to detect 95% of trisomies 22 and 16 (the latter ac-
counting for 37.25% of trisomies causing miscarriages) is 
4.87% and 3.10%, respectively. These limits of detection 
(LOD) have been postulated as a major handicap when 
using cfDNA to detect abnormalities in early miscarriage. 

F I G U R E  2   Stratification of the concordance variable by gestational age. The graphs show no higher rate of discordant results with decreasing GA; 
therefore, GA does not affect concordance rates. The number ofinformative cases at each gestational age (concordant and non-concordant) is shown at 
the top of each bar. NI, non-informative.

T A B L E  3   Model parameters influencing the concordance rate 
between niPOC and iPOC cases.

Variable aOR 95% CI P-value

MA 1.16 0.98–1.41 0.08

FFr 1.08 0.93–1.30 0.31

GA 1.05 0.73–1.57 0.78

Fetal sex

Male Reference Reference Reference

Female 0.26 0.05–0.92 0.03

Note: Bold numbers indicate statistical significance.
aOR, adjusted odds ratio; CI, confidence interval; FFr, FF recalculated (FF for 
female fetuses taken from the native algorithm and FF for male fetuses based on the 
Y-chromosome); GA, gestational age; MA, maternal age.
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However, our study detected 50% and 80% of trisomies 16 
and 22. Although this is a rate with room for improvement, 
the performance is quite good, especially when compared 
with iPOC and traditional cytogenetic studies, where poor 
tissue quality may affect the final diagnosis and where the 
limits of mosaicism are around 30%.48,49

Neither cfDNA analysis nor other available cytogenetic 
studies cover all genetic alterations causing pregnancy loss. 
The resolution limit of karyotypes or low-pass NGS does 
not support the detection of subchromosomal alterations of 
<7 Mb,21,22 and microarrays do not identify specific struc-
tural rearrangements.50,51 None of these approaches detects 
potentially lethal monogenic mutations; therefore, cfDNA 
provides helpful complementary information, especially in 
cases where POC tissue remains unavailable or in IVF, where 
triploid incidence remains lower than natural conceptions.52

4.3  |  Interpretation

We screened 120 patients for chromosomal abnormalities 
via iPOC using low-pass NGS and niPOC via cfDNA test-
ing of maternal blood and assessed non-informative rates 
through MCC and FF values. Approximately 20% of POCs 
processed by low-pass NGS remain undiagnosed due to un-
wanted contamination.53 We observed a low percentage of 
non-informative results (10.0%), a value a priori not different 
from cfDNA testing (16.7%). Precise tissue processing (not 
commonly available in most centres) supported a high rate 
of successful iPOC analysis; however, success rates of com-
mon POC techniques (e.g. karyotyping or microarray analy-
sis) can also be as low (e.g. 53%23 and 70%54).

Our niPOC informative rate was lower than that reported 
in a single-centre study by Yaron et al.32 (99%) that con-
trolled all process variables. Our research involved samples 
from multiple centres, with POC instructions specifying 
that maternal blood should be isolated before expulsion or 
chorionic villous sampling (CVS). While our model resem-
bles a realistic clinical diagnosis scenario (not all centres use 
the same clinical practice), technique performance rates re-
mained similar to reported data.

Additionally, cfDNA-based techniques should not be 
ruled out for aneuploidy assessment at GA of <10 weeks based 
on insufficient cfDNA. Although studies suggest a high pro-
portion of low FF cases at <8 weeks’ gestation,38,44 we found 
no differences in FF between GA values, suggesting that the 
earliest miscarriages may not necessarily increase the like-
lihood of non-informative results. As in other prospective/
more recent studies,30,32 cfDNA testing provides informative 
results before 8 gestational weeks, suggesting no clinically 
valuable cut-off excluding low FF cases. This agrees with 
genome-wide sequencing studies for cfDNA analysis with 
>80% sensitivity for trisomies, even in low FF samples.55

We classified 13 non-concordant cases as female non-
viable pregnancies with a low median FF, suggesting female 
POCs as the most likely to have discordant outcomes when 
using a Y-chromosome-based FF cut-off with a standard FF 

estimator. A multivariable model demonstrated fetal sex 
as the only variable influencing cfDNA testing misclassi-
fication. The abnormality discordance may arise from an 
overrepresentation of informative cases associated with 
an overestimated FF in female pregnancies. In support, we 
found a different non-informative case distribution in male 
fetuses when basing classification on the native algorithm FF 
rather than the Y-chromosome-based FF.

Despite this setback, we observed promising niPOC per-
formance, with sensitivity and specificity values of 0.79 (95% 
CI 0.67–0.89) and 1.00 (95% CI 0.86–1.00) and a concordance 
rate of 85.1%; this compares favourably with cytogenetic 
analysis of POCs and argues against studies questioning the 
utility of cfDNA testing for POC studies.30,32,38,44

Although cfDNA testing cannot currently replace cy-
togenetic testing, this approach could improve the diag-
nostic yields of current approaches. Studies have reported 
the cost-effectiveness of cfDNA testing to guide RPL 
work-up.56 In this regard, cfDNA testing represented the 
second-highest diagnostic yield pathway for identifying 
POC aetiology in RPL (ahead of ASRM work-up and POC 
karyotyping) and the most cost-effective system (avoid-
ing costs associated with invasive procedures required for 
POC collection).

Non-invasive POC can be used for both EPL and RPL. 
The niPOC could determine the aetiology of fetal remains 
in first miscarriages. A screen-positive result provides a high 
probability that the detected abnormality caused the miscar-
riage, with appropriate genetic counselling offered. Finding 
fetal aneuploidy could be important, given its association 

F I G U R E  3   Flowchart proposing the path of choice for genetic 
analysis of POCs based on the number of abortions. Application of the 
contingent approach through cfDNA testing.
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with good prognoses for future pregnancies compared with 
euploid pregnancy loss.44

InvasivePOC analysis may represent the method of choice 
in RPL, given its higher diagnostic yield in informative cases 
(Figure 3). In this scenario, given a euploid result, patients 
should be referred for an ASRM work-up, but given an an-
euploid result, the patient should receive appropriate genetic 
counselling. In non-informative cases caused by MCC, the 
patient could opt to use cfDNA testing to increase the di-
agnostic yield. In these cases, if we obtain a screen-positive 
result, the patient would receive appropriate genetic counsel-
ling and avoid referral to the ASRM-work-up,2 which would 
not have happened if only the IPOC pathway had been used. 
Based on our results, this contingent approach increases 
iPOC informative rates from 80–90% to 98%.

5  |   CONCLUSION

Genome-wide cfDNA-based screening provides a straight-
forward, non-invasive approach to elucidate whether fetal 
aneuploidy explains loss in EPL or RPL patients. Clinicians 
must consider maternal blood sampling before POC collec-
tion to ensure niPOC effectiveness. Y-chromosome-based 
methods better classify non-informative cases in male fetus 
pregnancies and, thus, provide a more accurate assessment 
of cfDNA testing performance. Used contingently, cfDNA 
testing can significantly improve diagnostic yields of mo-
lecular approaches in MCC.
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