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A B S T RAC   T
Oxidative stress is considered a major etiology for male infertility, more specifically idiopathic infertility. The causes of seminal oxidative stress 
can be intrinsic, such as varicocele or due to the presence of active leukocytes and immature germ cells. Reported external causes are smoking, 
alcohol or exposure to environmental toxins. Traditional methods to determine the seminal oxidative stress do not evaluate this status directly, 
but rather measure its components or intermediate products indirectly, instead. The major disadvantages of the traditional methods are related 
with time and cost as these methods are extremely time consuming and require expensive equipment, consumables and highly skilled laboratory 
personnel. To overcome these drawbacks, the MiOXSYS® system, a method which directly measures the oxidation-reduction potential (ORP), 
was developed. The evaluation of the ORP using MiOXSYS® is cost-effective, easy and quick. However, this newly introduced method to evalu-
ate the oxidative status of semen still requires validation in different andrology laboratory settings across the world.
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Infertility is defined as failure to achieve a clinical preg-
nancy after one year of regular and unprotected inter-

course.1 Globally, the prevalence of infertility in couples 
is about 15%, and is estimated between 2.5-12% of men 
are infertile, based on the geographic location.1 Among 
the female and male factors contributing to infertility it 
is estimated that the male contribution ranges from 20% 
up to 70% to the infertility of the couple.1 Male infertil-
ity is related to several factors, among them emotional, 
sociocultural and financial problems.2 In addition, many 
medical conditions such as varicocele, hypogonadotropic 
hypogonadism, disorders in ciliary function, cystic fibro-
sis, infection, systemic diseases, testicular deficiency, and 
post testicular impairment are also associated with male 
infertility. Further, unhealthy lifestyle choices and associ-

ated metabolic diseases are contributing to an increase in 
the incidence of male fertility.3

The basic semen analysis according to World Health 
Organization (WHO) guidelines is still the cornerstone 
of laboratory male fertility evaluation.4 The quality and 
thus the functionality of spermatozoa reflects the status of 
germ cells epithelium, epididymis and accessory sexual 
glands.5, 6 This basic semen analysis is far from perfect. 
Indeed, the reference values for semen analysis as estab-
lished by the WHO 20104 do not differentiate the fertile 
from infertile men. In fact, this evaluation neither takes 
dysfunctions such as DNA fragmentation or the oxida-
tive state of the ejaculate, nor genetic variability of sper-
matozoa, into account.7, 8 Moreover, the reference limits 
suggested by the WHO 2010 guidelines do not represent 



ORP AS A BIOMARKER FOR INFERTILITY	MAR TINS

Vol. 61 - No. 2	 Panminerva Medica	 109

MARTINS
ORP AS A BIOMARKER FOR INFERTILITY

In this review, we present an overview on the OS con-
cepts as well as its causes and the mechanisms behind the 
overproduction of ROS. We discuss a new biomarker for 
the evaluation of OS by the measurement of oxidation-re-
duction potential (ORP), describe the test principle of this 
novel parameter and highlight the advantages and clinical 
significance of the assay.

Oxidative stress and spermatozoa

Reactive oxygen species

The production of ROS is essential for the homeostasis in 
aerobically living cells. However, sometimes the system 
is unable to neutralize an excessive production of ROS or 
exposure of cells to excessive amounts of ROS causing an 
imbalance between oxidants and antioxidants resulting in a 
state of OS. Typically, ROS are free radical oxygen deriva-
tives. Radicals are molecules containing unpaired elec-
trons in the outer orbit, a chemical condition, which ren-
ders these molecules electronically unstable and therefore 
highly reactive in order to reach stability.18 Other strongly 
oxidizing molecules such as H2O2, though not a free radi-
cal, or nitric oxide and the peroxynitrite anion have a role 
in oxidation-reduction reactions in fertility.19, 20 The main 
targets for ROS and oxidants are electron-rich molecules 
which can easily be oxidized such as polyunsaturated lip-

the distribution of these values among fertile men9 and 
are also not representative of the actual population to be 
evaluated (men who are unable to initiate a pregnancy) 
as these values are based on the evaluation of fertile men 
only.10, 11

Although there are many causes for male infertility, the 
etiology of male infertility is essentially idiopathic12 and it 
has a prevalence of 10-20%.13 However, one of the major 
causes for unexplained male infertility is oxidative stress 
(OS),14 a parameter, which is currently not included in the 
basic semen analysis. OS is a consequence of an imbal-
ance in the production of reactive oxygen species (ROS) 
and the availability of seminal antioxidant capacity.15 On 
the one hand, ROS play a key role in the normal develop-
ment, maturation, capacitation and acrosome reaction of 
spermatozoa, as well as in the fertilization process itself.16 
However, when endogenous (for example: leukocytes 
or immature sperm) or exogenous (for example: inflam-
mation) sources of ROS disturb the equilibrium between 
oxidants and antioxidants, OS develops and can damage 
spermatozoa, thus leading to a decrease in sperm fertil-
izing potential.17

In light of these problems, new test systems to evalu-
ate sperm functional disorders and anomalies are needed 
to improve male fertility diagnostics. In fact, the Ameri-
can Society for Reproductive Medicine acknowledges the 
limitations of basic semen analysis and has 
included sperm function tests, such as sin-
gle-cell gel electrophoresis assay (Comet), 
terminal deoxynucleotide transferase–me-
diated dUTP nick-end labeling (TUNEL) 
assay or the sperm chromatin structure as-
say (SCSA) into the evaluation of infertile 
men.18 However, measurement of OS and 
ROS by direct or indirect method are not 
included as these techniques are not prop-
erly evaluated yet, are not sensitive enough, 
or are too susceptible to interference.

Figure 1.—The production of reactive oxygen spe-
cies by the spermatozoa is essential for some physi-
ological processes such as capacitation, acrosome 
reaction, hyperactivation and sperm-oocyte bind-
ing. However, when the ROS production overcome 
the antioxidant defenses of the spermatozoa due to 
endogenous or exogenous sources it can cause lipid 
peroxidation, protein oxidation, DNA damage or 
apoptosis in the male reproductive tract and lead to 
an infertility state.
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Leukocytes are mainly responsible for the high production 
of ROS,41 which in turn are detrimental to male fertility. 
Yet, the effects of leukocytospermia on male fertility are 
controversially discussed.42-49

Leukocytospermia has been related with impaired ca-
pacitation and sperm fertilizing capacity. However, al-
though many studies reported a negative effect of leuko-
cytospermia on semen quality42-44 or sperm DNA fragmen-
tation,42, 45 the connection between leukocytospermia and 
these processes is not well established.46, 47 In addition, the 
incidence of leukocytospermia correlates only poorly with 
other semen parameters.48, 49 The presence of leukocytes 
in semen can be a consequence of an infection, inflamma-
tion or cellular defense mechanisms in the male genital 
tract where leukocytes will be activated.40 The mecha-
nism of ROS generation in leukocytes is the same as in 
spermatozoa. However, in order to destroy the pathogens, 
leukocytes release large quantities of superoxide, which 
are about 1000 times more than that produced in sper-
matozoa.19 Due to their immunological defense function, 
leukocyte contribution to the overall ROS in semen is ex-
tremely high.40, 41 If this overwhelms the limited antioxi-
dant capacity of spermatozoa and seminal plasma, a stage 
of oxidative stress will occur.50

Since spermatozoa are extremely prone to oxidative as-
saults because of their extraordinary high amount of poly-
unsaturated fatty acids (PUFA) in their plasma membranes, 
membrane lipids will be oxidized in a process named lipid 
peroxidation.51 PUFAs contains more than two carbon-
carbon double bonds, which are the primary site of the as-
sault. Most PUFAs have unconjugated double bonds sepa-
rated by methylene groups.52 Chemically, double bonds 
adjacent to a methylene group cause that the methylene 
carbon-hydrogen is more susceptible to abstraction. When 
the abstraction occurs, the radical that is formed is stabi-
lized by rearrangement of the double bonds, which can be 
then oxidized by oxygen leading to peroxyl radical, which 
in turn can oxidize neighboring PUFAs in a radical chain 
reaction. The propagation of this process depends of the 
antioxidant capacity of the spermatozoa.53

Immature spermatozoa

Besides leukocytes, immature spermatozoa are another 
source of ROS in the ejaculate. Here, the increase in ROS 
generation is linked to an increase in cytoplasmic droplets 
typically found in immature sperm.54 The increase in bio-
markers of cytoplasmic space and lipid peroxidation was 
correlated with abnormalities in spermatozoa.55

ids in plasma membranes, carbohydrates in nucleic acids 
and amino acids in proteins.21, 22 When present at physio-
logical levels, ROS are crucial for sperm functions as these 
molecules trigger essential physiological events such as 
capacitation, acrosome reaction and oocyte fusion, while 
the addition of antioxidants prevented sperm cells from 
undergoing these events23, 24 (Figure 1). The production of 
ROS in spermatozoa are derived from two different sourc-
es, namely the mitochondria via an NADH-dependent 
oxidase-reductase25 or the plasma membrane through an 
NADPH oxidase system.26

Sources of reactive oxygen species

Varicocele

Varicocele is a tortuosity and dilation of the veins of the 
Pampiniform plexus in the spermatic cord and a major 
cause for male infertility.27 Varicocele is described as a 
pathological cause for elevated OS and for a decrease in 
sperm quality. Indeed, men with varicocele have elevated 
OS, even when they are fertile.28 OS in seminal plasma is 
reported to increase with higher grades of varicocele.29 The 
mechanisms related to the increase of ROS or the decrease 
in antioxidant defense in case of varicoceles, however, are 
not well understood. A current hypothesis based on the 
generation of ROS due to testicular hypoxia, increase in 
scrotal temperature, epididymal dysfunction and accumu-
lation of toxins.30-34 Testicular hypoxia was investigated 
as a cause of OS in men with varicocele by evaluating hy-
poxia-inducible factor-1α. This factor was over-expressed 
in the internal spermatic vein and/or is related to oxidative 
stress.32, 33 An increase in testicular temperature impairs 
spermatogenesis and consequently decreases sperm qual-
ity.34 In fact, some studies showed an elevation in scrotal 
temperature of men with varicocele.30, 31 Yet, theories on 
how varicocele increases temperature remain unclear.30, 31

Besides an improvement in sperm quality and pregnan-
cy rates,35-37 a decrease in seminal oxidative stress in men 
after a varicocelectomy is well reported, more specifically 
a decrease in sperm DNA damage.38, 39

Leukocytospermia

Leukocytes are part of the ejaculated cells in semen and 
present in the male reproductive tract, even in healthy 
men.40 The main sources of peroxidase-positive leuko-
cytes are the prostate and seminal vesicles.40 According 
to the WHO, more than 1×106 per milliliter of peroxidase-
positive leukocytes are regarded as leukocytospermia.4 
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cessive ROS production. Tobacco contains approximate-
ly 4000 harmful substances and cigarette smoke contains 
more than 7000 chemical compounds. Among these, 
many are known for their ability to increase ROS pro-
duction,56, 57 which is even more harmful for fertility as 
the presence of other byproducts in cigarette smoke such 
as cotinine60-62 and hydroxycotinine that are reported in 
seminal plasma.56 The effects of smoking on sperm qual-
ity are well documented with reports consistently show-
ing decreased sperm quality i.e. sperm count,58, 60, 61 mo-
tility60, 61 and viability60 and increased DNA damage.62, 63

Men are also unintentionally exposed to many other 
environmental toxins, such as radiation, pharmacologi-
cal compounds or pollutants that can accumulate in the 
body and in the testes thereby increasing the ROS pro-
duction. Studies have reported impairment of male fertil-
ity potential in a variety of cases. For example, pesticides 
and chemical fertilizers affect sperm count in farmers64-66 
and increase sperm DNA damage.65, 67 On the other hand, 
phthalates, present in most plastics as plasticizer, report-
edly increase DNA sperm damage68 and reduce sperm mo-

Environmental factors

Nowadays, many people are exposed to numerous envi-
ronmental toxins as well as to cigarette smoke or excessive 
alcohol. The human body metabolizes alcohol and one of 
the products is NADH, a compound, which is responsible 
for the respiratory chain activity and for the increase in 
ROS formation. Consumption of alcohol is also associated 
with a state of hypoxia leading to lesions in the tissues.56 
NADH and acetaldehyde are products of alcohol metabo-
lism. Acetaldehyde is an intermediates in this process, 
which, when in contact with proteins and lipids also in-
creases ROS production.56, 57 Moreover, due to its reactive 
nature by reacting with proteins and lipids, acetaldehyde is 
damaging the mitochondria, which consequently results in 
decreased ATP production.56 NADH accumulation stimu-
lates the activity of the respiratory chain, consuming the 
existing oxygen and is eventually forming ROS.

Many studies have reported low semen quality such as 
increase in morphologically abnormal sperm in alcoholic 
men.58, 59 Smoking is another risk factor leading to ex-

Table I.—�Advantages and disadvantages of methods evaluating oxidative stress in semen.78-87

Reference Assay Advantages Disadvantages

Faulkner,78 Agarwal79 Chemiluminescence •	High sensitivity and specificity
•	Evaluates intra- and extracellular ROS
•	Highly reproducible

•	Requires large and expensive equipment
•	Highly time-consuming
•	Requires a large amount of sample
•	Dependent of the half-lives of the probes

Esfandiari80 Nitroblue Tetrazolium •	Easy to perform
•	Cost-effective method
•	Can provide the source of ROS (light 

microscope)

•	Low specificity (can occur cross reactions 
with oxidoreductases)

•	Subjective interpretation

Dikalov81 Cytochrome C Reduction Test •	Detects high levels of ROS
•	Evaluates O2

− released to the extracellular 
space

•	Does not detect O2
− intracellular

•	Low sensibility to detect NADPH oxidase 
low activity

Kohno82 Electron Spin Resonance •	Detects high levels of ROS
•	Characteristics of free radicals, formation 

and elimination velocities of free radicals

•	Reducing agents presented in spin adduct 
can neutralize free radicals

•	If the radical reacts immediately with other 
molecules will not be detected

Draper83 Thiobarbituric Acid Assay •	Inexpensive and simple method
•	Can be evaluated by fluorometry or 

spectrophotometry
•	For low sperm concentrations sensitive 

HLPC can be used

•	Requires laborious standards
•	Not used in clinical environment

Said,84 Whitehead85 Total Antioxidant Capacity •	High sensitivity and specificity
•	Measures the total antioxidant capacity of 

the sample
•	Highly reproducible

•	Requires large and expensive equipment
•	Highly time-consuming
•	Requires a large amount of sample
•	Limited to the half-lives of the probes
•	Requires a trained operator

Agarwal86, 87 MiOXSYS® system •	Snapshot of the oxidative state of the sample
•	Easy and simple to execute
•	Inexpensive
•	Measures fresh and frozen samples

•	Affected by the viscosity of the sample
•	Requires further validation for outcome
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oxidase system (superoxide ions) which helps to transfer 
electrons from NADPH to NBT.89 These formazan crys-
tals can microscopically be evaluated. Alternatively, these 
crystals can be solubilized and the absorbance of the re-
sulting purple-blue solution can be measured.90 The results 
of the NBT test reflects the ROS-generating activity in the 
cytoplasm and can detect the cellular source of ROS in 
samples such as semen.80

The cytochrome c reduction test detects large quantities 
of the free radical superoxide (O2

−) that is released into 
the extracellular space by the cells. The principle is based 
on the reduction of ferricytochrome c by O2

− to ferrocyto-
chrome c, a reaction that can be detected by measuring the 
absorbance at 550 nm.81

The electron spin resonance is the only method that is 
able to detect free radicals directly. This technique is based 
on the magnetic orientation and on the molecular environ-
ment of the unpaired electrons present in ROS.56

Indirect measurement of OS

The indirect measurement of ROS in semen includes the 
following methods: 1) measurement of lipid peroxidation 
levels;83, 91 2) determination of the total antioxidant capac-
ity (TAC) (enhanced-chemiluminescence or colorimetric); 
and 3) determination of the ROS-TAC score.92

Lipid peroxidation levels can be detected by measuring 
the levels of MDA an end product of this process.83 The 
thiobarbituric acid (TBA) assay is a method to evaluate 
changes in MDA levels. When TBA reacts with MDA a 
colored compound is formed, which can be detected by 
spectrophotometry or fluorometry,83 or for low sperm 
MDA concentrations by highly sensitive high pressure liq-
uid chromatography (HPLC). Alternatively, spectrofluoro-
metric measurement of iron-based promoters can be per-
formed.57 Another way to evaluate lipid peroxidation is by 
measuring another end product such as isoprostane. This 
compound can be detected by commercial immunoassays 
(the preferred method of detection for a cost-effective 
analysis), generated polyclonal antibodies or mass spec-
trometry.91

The TAC assay measures the combination of antioxi-
dant activities of all components using enhanced-chemi-
luminescence or colorimetric techniques.84 The chemilu-
minescence principle of measuring TAC is based on the 
light emitted when luminol is oxidized by H2O2 in a reac-
tion catalyzed by horseradish peroxidase (HRP). The con-
tinuous light emission is dependent on the production of 
free radicals and the radical scavenging by antioxidants.85 
This methods is generally used for the evaluation of TAC 

tility.69, 70 Cadmium is a heavy metal with similarities in 
its chemistry to the trace element zinc can be incorporated 
in the body where it accumulates with harmful effects of 
male fertility.71-73 Radiation is also not only related to an 
increase in seminal ROS production, but also in low sperm 
motility74, 75 and DNA integrity.75 This includes electro-
magnetic radiations emitted by cell phones. Radiotherapy 
and chemotherapy used in cancer treatment causes azo-
ospermia.76, 77

OS measurement

Since seminal OS has significant adverse effects on ejacu-
lated spermatozoa, it is important to quantify the levels of 
OS in a given sample to obtain a more accurate picture of 
the seminal redox level and develop and optimized treat-
ment plan for affected infertile men. The measurement of 
OS in the ejaculate can either be done directly by measur-
ing OS, ROS or reactive nitrogen species, or indirectly by 
determining end products of lipid peroxidation (e.g. malo-
ndialdehyde [MDA]) or end products of ROS production, 
and cofactors and antioxidants. Advantages and disadvan-
tages of the direct and indirect methods to evaluate OS are 
presented in Table I.78-87

Direct measurement of OS

Methods for the direct measurement of ROS in semen in-
clude: 1) chemiluminescence;88 2) nitro blue tetrazolium 
(NBT) test;80 3) cytochrome c reduction test;81 and 4) elec-
tron spin resonance.56

Chemiluminescent methods are most commonly used 
for the measurement of ROS in semen and spermatozoa. 
They evaluate both intra- and extracellular ROS, but not 
the damage caused by the ROS.88 The principle of these 
tests is based on the combination of a chemiluminescent 
probe with a free radical resulting in the emission of a light 
signal that is quantified in a luminometer. This test can use 
two different probes: luminol or lucigenin. Luminol is ex-
tremely sensitive at pH of 7 and reacts with the major-
ity of ROS and the reactive radical form is generated by 
univalent oxidation.78 On the other hand, lucigenin only 
measures the superoxide radical present in the extracel-
lular space. The radical formed is generated by univalent 
reduction.78

The NBT test is used to evaluate neutrophil leukocyte 
function and quantify cellular oxidative metabolism.89 In 
this test, cells are incubated with NBT, which is reduced 
to water insoluble formazan crystals by a cytoplasmic 
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in seminal fluid and was validated by Sharma and collab-
orators.92 Contrary, the colorimetric evaluation of TAC is 
based on the antioxidant capacity of the sample to inhibit 
the oxidation of 2,2’-azino-bis(3-ethylbenzothiazoline-
6-sulphonic acid) (ABTS) to ABTS+ by metmyoglobin. 
The values obtained are then compared with a standard, 
which is normally Trolox, a highly potent water-soluble 
vitamin E derivative as radical scavenger.93

Finally, the ROS-TAC score is a parameter based on the 
measurement of ROS and TAC. This score was created in 
order to provide a measure derived from the levels of ROS 
(oxidants) produced and the antioxidant levels in a sample 
and is therefore a measure of the balance between oxidants 
and antioxidants. It minimizes the variability from indi-
vidual parameters of OS.92

Measurement of oxidation reduction potential

Oxidation reduction potential (ORP) was used over 50 
years ago to determine if the oxidant activity was suf-
ficiently high in treated water to kill bacteria and other 
microbes.94 ORP or the redox potential is a measure of 
the tendency of a compound A to acquire electrons from 
compound B whereby compound A will be reduced and 
compound B be oxidized. The greater the affinity for elec-
trons, the higher the ORP of a redox pair. Hence, ORP is a 
reflection of the oxidative state of a chemical system, in-
cluding cellular systems. Consequently, biological fluids, 
including semen also have an inherent ORP, which can be 
of clinical value as this is related to the status of biological 
and/or pathological processes. Thus, the ORP can provide 
information on the health status of a patient.95

Technically, ORP is a composite marker for an integrated 

Figure 2.—MiOXSYS system. A) MiOXSYS analyzer with the sensor 
socket and the sensor module. B) Sensor to be inserted in the MiOXSYS 
analyzer with indication of the reference cell and the sample port where 
the sample is loaded.

Figure 3.—MiOXSYS® analyzer clinical set-up. For the analysis of 
ORP, the MiOXSYS® analyzer is necessary, the small device and the 
sensor occupy a small space in an andrology center.

Figure 4.—The sensor should be placed on the port of the MiOXSYS® 
analyzer with the electrodes facing the analyzer. The sensor should be 
inserted by holding from side and the placing horizontal pressure on the 
sensor against the MiOXSYS® analyzer.

Figure 5.—A 30-µL semen sample is loaded on the sample port of the 
sensor strip.

A B
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SYS® system provides the static ORP, which represents 
the actual redox balance in a given sample; higher ORP 
is indicative of oxidative stress.79 The advantages and dis-
advantages of the MiOXSYS® are summarized in Table I.

Protocol

MiOXSYS® is a simple system where a steady low voltage 
current is applied, and the activity of the electrons is mea-
sured in millivolts (mV). To measure the ORP in a semen 
or seminal plasma sample, after the analyzer is turned on, 
a MiOXSYS® Sensor is unwrapped (Figure 3) and placed 
on the port of the MiOXSYS® analyzer with the electrodes 
facing the MiOXSYS® Analyzer (Figure 4). Both, fresh or 
frozen semen or seminal plasma samples can be measured. 
Using a 30µL micropipette load of the sample on the appli-
cation port taking care that no air bubbles are introduced, 
and the entire port is covered (Figure 5). Analysis will start 
once the sample reaches the reference cell of the sensor 
(Figure 2). It takes about 2 minutes for the sample to be 

Table II.—�Clinical studies in male fertility with ORP measurements by MiOXSYS®.86, 87, 96-98

Reference Population Findings

Agarwal86 •	Healthy male volunteers (N.=26)
•	Infertile patients (N.=33)

•	MiOXSYS® measured ORP in semen and seminal plasma
•	ORP levels are not affected by semen age

Agarwal87 •	Proven fertile men (control) (N.=15)
•	Infertile men (Patient) (N.=293)
(The samples were categorized in 

differentiate controls NZ, OZ, AZ and TZ)

•	ORP levels were higher in control group compared with NZ.
•	ORP levels were higher in patient group compared with NZ
•	ORP has high predictive power for OZ patients
•	A cut-off of 2.59 mV/106 sperm from infertile men with OZ

Agarwal98 Two andrology centers:
USA:
•	 infertile patients (N.=194)
•	fertile donors (N.=51)
Qatar:
•	 infertile patients (N.=400)
•	fertile donors (N.=50)

•	ORP levels showed no differences between both centers
•	In USA, a cut-off of 1.42 mV/106 sperm was able to differentiate between fertile and 

infertile (84.3% specificity and 49% sensitivity)
•	In Qatar, a cut-off of 2.26 mV/106 sperm allowed to differentiate between fertile and 

infertile (78% specificity and 60.8% sensitivity)
•	Both centers, a cut-off of 1.42 mV/106 sperm was able to differentiate between fertile and 

infertile men (74.3% specificity and 60.6% sensitivity)
•	Proves the reproducibility and reliability in ORP measurements

Agarwal96 •	Healthy donors (N.=49)
•	Infertile patients (N.=194)

•	ORP levels were higher in samples with abnormal sperm parameters
•	A cut-off of 1.57 mV/106 sperm allowed to detect at least 1 abnormal parameter (88.1% 

specificity and 70.4% sensitivity)
•	A cut-off of 2.59 mV/106 sperm allowed to detect OZ (91.2% specificity and 88% 

sensitivity)
Majzoub97 •	Proven fertile men (N.=50)

•	Infertile men (N.=365)
•	In infertile men the ORP values were inversely related with total sperm count, motility and 

morphology
•	ORP values were higher in samples with abnormal quality compared with normal quality
•	Infertile patients presented higher values of ORP when compared with fertile men
•	A cut-off of 1.38 mV/106 sperm allowed to differentiate normal from abnormal samples 

(87.8% specificity and 63.3% sensitivity)
•	A cut-off of 1.41 mV/106 sperm allowed to differentiate fertile from infertile men (78% 

specificity and 57.3% sensitivity)
•	Proven fertile men (N.=100)
•	Infertile men (N.=1168)

•	Infertile men presented higher ORP levels compared with fertile men
•	ORP levels were negatively correlated with normal morphology values in infertile patients
•	SDF was positively correlated with ORP levels in infertile patients
•	A cut-off of 1.73 mV/106 sperm allowed to differentiate normal from abnormal morphology 

in sperm (72% specificity and 76% sensitivity)
AZ: asthenozoospermic; NZ: normozoospermic; ORP: oxidation-reduction potential; OZ: oligozoospermic; TZ: teratozoospermic.

evaluation of the balance between total oxidants and anti-
oxidants in a biological fluid and provides an overall oxi-
dative status of the body fluid of the patient.95 However, 
the measurement techniques used to assess OS in a cellular 
system, such as semen, are based on single markers, which 
are not consistent. In addition, while most methods for the 
evaluation of OS in a cellular system are expensive, time 
consuming and require highly skilled technical expertise, 
the measurement of ORP is a simple and fast method to 
assess the overall oxidative status of semen.

Male infertility oxidative system (MiOXSYS®)

The development of the Male Infertility Oxidative System 
(MiOXSYS®) is an instrument that aims to overcome the 
negative aspects of other more complicated and expensive 
methods to evaluate OS in semen samples. MiOXSYS® is 
a galvanostat-based technique comprising the analyzer and 
a disposable sensor (Figure 2). It measures the redox poten-
tial in a rapid, simple and inexpensive way.86 The MiOX-
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read and results are displayed on the analyzer screen. Once 
the analysis is complete, the result will be recorded, sen-
sor removed, and the instrument is shut down. The results 
are expressed as mV and are then normalized to the sperm 
concentration as mV/106 sperm/mL.79

Clinical relevance of OS in male fertility

The negative effect of OS on sperm quality and conse-
quently the male fertility potential has repeatedly been de-
scribed.19, 30-34, 54 Recent reports indicate that higher ORP 
levels are closely related with poor semen quality.96, 97 
Male partners of fertile couples have significantly lower 
values when compared with normal semen parameters97 
and the ORP value allows to differentiate between fertile 
and infertile men. Information about the different studies 
performed on ORP can be found in Table II.86, 87, 96-98

Conclusions

The basic semen analysis remains the “cornerstone” in 
male fertility evaluation. However, it has a limited predic-
tive value for fertilization to occur. Oxidative stress is im-
plicated in the etiology of male infertility. The role of ROS 
in sperm was discovered long time ago. While physiologi-
cal levels of ROS are necessary for normal physiological 
function of spermatozoa, excessive ROS will have detri-
mental effects. The subject is not new, but the role of ROS 
in spermatozoa is still a matter of debate in male fertility; 
mainly the effects of an imbalance between oxidants and 
antioxidants. The evaluation of OS in spermatozoa can be 
performed with several methods, of which none evaluates 
the oxidative status of the spermatozoa or semen directly. 
Furthermore, the available methods are time consuming, 
require expensive equipment and a trained operator. In 
contrast, the evaluation of the oxidative state of a semen 
sample using the MiOXSYS® system is cheap, timesav-
ing, reproducible and easy. This system evaluates seminal 
oxidative stress in simple, fast and inexpensive way. Com-
binated with the MiOXSYS® system, it is an attractive al-
ternative for the evaluation of the oxidative state of a sam-
ple in an andrological laboratory setting. ORP is not only 
able to distinguish normal and abnormal semen samples 
but is also able to differentiate fertile from infertile men.
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